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Abstract— We consider the surgical subtask of automated ex-
traction of embedded suturing needles from silicone phantoms
and propose a four-step algorithm consisting of calibration,
needle segmentation, grasp planning, and path planning. We
implement autonomous extraction of needles using the da
Vinci Research Kit (dVRK). The proposed calibration method
yields an average of 1.3mm transformation error between the
dVRK end-effector and its overhead endoscopic stereo camera
compared to 2.0mm transformation error using a standard rigid
body transformation. In 143/160 images where a needle was
detected, the needle segmentation algorithm planned appro-
priate grasp points with an accuracy of 97.20% and planned
an appropriate pull trajectory to achieve extraction in 85.31%
of images in real-time. For images segmented with >50%
confidence, no errors in grasp or pull prediction occurred. In
images segmented with 25-50% confidence, no erroneous grasps
were planned, but a misdirected pull was planned in 6.45% of
cases. In 100 physical trials, the dVRK successfully grasped
needles in 75% of cases, and fully extracted needles in 70.7%
of cases where a grasp was secured.

I. INTRODUCTION
Robotic minimally invasive surgery (RMIS) is an estab-

lished method for surgical operation that involves a surgeon
performing an operation via master-slave teleoperation of a
Robot Surgical Assistant (RSA), such as Intuitive Surgical’s
da Vinci [12] and the Raven-II surgical robot [8]. The
surgeon exercises full control and oversight of the robot’s
motions, so tedious tasks such as suturing, which require a
high degree of precision and delicacy, can lead to surgeon
exhaustion. Recent work investigates automation of robot-
assisted suturing subtasks including tissue localization and
debridement [7, 20, 30], needle manipulation [5, 10, 31], and
knot-tying [2, 3]. Automation of suturing subtasks can po-
tentially reduce exertion on the part of the surgeon, improve
workflow by reducing procedure times, avoid tool hand-offs,
and prevent the infrequent yet dangerous event of needle loss
and retention in a patient [9, 11].

Loss and subsequent recovery of surgical needles has been
found to account for up to 76% of all ’near miss’ events
(situation where patient is exposed to a hazardous situation
but does not experience harm due to early detection or
luck) [4], leading to increased operative times, cost and risk
to the patient. Improved extraction of the surgical needles can
reduce ischemia through reducing the number of repeated
needle throws and number of lost needles.

The focus of this paper is automating the subtask of
locating an embedded surgical needle in a phantom in the
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Fig. 1. (a) Needle extraction pipeline. Given an image of a suturing needle
embedded in a tissue phantom, we segment the needle to identify a grasp
point and a direction in which to pull the protruding needle and execute
the extraction using a learned correspondence between the robot end-
effector and camera coordinate space. (b) Challenges of vision-based needle
segmentation. Sub-figures 1-8 present a sample of the many varying poses
embedded suturing needles can take on, which complicates segmentation.
Examples 1, 2, and 4 exhibit both the stark highlights and shadows that can
appear on an embedded needle and examples 3 and 6 exhibit specularity,
both of which interfere with detecting a needle contour in full. Examples 2,
3, 6, and 8 show linearity while examples 1, 4, 5, and 7 exhibit curvature.

RSA’s camera view and extracting it from the phantom.
Detecting a suturing needle on a surgical phantom poses
several challenges in image processing. Suturing needles
typically range from 0.02 to 0.8mm in thickness and 32 to
55mm in length. One issue is that needles are semicircular
in shape but can appear curved to linear once embedded
depending on the angle of insertion and the angle of view
in an RSA’s camera frame. Needles can also have a highly
reflective metallic surface which can cause needles to be
overexposed or discolored in different configurations.

Aside from perception challenges, the task of embedded
needle extraction has control-based obstacles as well. Cable-
driven RSA’s including the da Vinci can be kinematically
inaccurate due to inconsistent cable tensioning across a
workspace, cable self-collisions, and cable friction [13, 15,



21]. In particular, the da Vinci Research Kit (dVRK),
assembled from parts of the da Vinci Surgical System,
has two cable-driven arms called patient side manipulators
(PSMs) [12]. 4 DoF tools can be secured to these PSMs via
a cable system, which yields inherent control error when the
tool’s end-effector is commanded to a particular orientation
and position in the PSM coordinate frame. Every calibration
method has some error associated with the transformation
between the dVRK’s endoscope and PSM frames [22, 27].

In this paper, we present an algorithm for needle detection
with an endoscopic stereo camera and extraction of embed-
ded suturing needles with the dVRK. In all experiments,
we use one PSM, and one suturing needle. We focus on
cases where the majority of the needle is protruding from
the phantom in order to be able to secure a solid grasp and
to avoid trauma to the tissue-simulating phantom. To improve
the calibration of the rigid body transformation between the
endoscopic and PSM frames, we find corresponding points
in each frame and project those points to their respective
best-fit planes and then apply a rigid body transformation.
Summary of Contributions

The approach in this paper draws from several prior
works on suturing needle detection and pickup/extraction and
makes three contributions:

1) A calibration algorithm that builds upon [18] which
results in an end-effector to endoscope transformation
error of 1.3mm, compared to a transformation error of
2.0mm associated with a standard rigid body transfor-
mation.

2) An algorithm for robust real-time needle detection using
ellipse-fitting and contour-based segmentation that does
not require marking needles with colored indicators
as in [5, 24, 31, 33] or providing a high contrast
background to isolate needles as in [14].

3) An algorithm for finding a grasp point for an embedded
needle and the appropriate direction in which to pull
the needle to extract it from a surgical phantom with an
implementation for performing the extraction with the
dVRK. The procedure identified a needle from 143/160
workspace images, and of those, planned an appropriate
grasp in 97.20% of cases and an appropriate pull in
85.31% of cases. Given an appropriate segmentation in
100 trials, the dVRK successfully grasped an embedded
needle in 75.0% of trials and of those, fully extracted
the needle in 70.7% of cases.

II. RELATED WORK
A. Calibration

Calibration, particularly fine-tuning the correspondence
between an RSA’s endoscope viewing frame and the frame
of its arm, is crucial for surgical robots like the dVRK
to be able to perform tasks that require a high degree
of precision and dexterity, especially in unstructured envi-
ronments. Prior work has relied on using multiple sensors
such as angled lasers, stereo cameras, monocular cameras
as in [28], learning non-linear correction factors for cable-
driven RSAs as in [19, 30], learning hand-eye coordination

through visual-servoing as in [16], or scanning the arm’s
tooltip across known points in three planes in the workspace
and using plane interpolation to register a point cloud as
in [5]. Mahler et al. [19] used Gaussian Process Regression
and data-cleaning to achieve a positional error of 2mm with
the Raven II Surgical Robot. Seita et al. [30] achieved a
transformation error of 1.08mm by allowing a dVRK arm to
move through open-loop trajectories at random and training
a DNN and Random Forest (RF) on the camera pixels and
internal pose of the end-effector at various points in those
trajectories to learn and correct the positional bias of the
robot. Using the three plane scanning method, D’Ettorre
et al. [5] constructed a point cloud with an error of 0.88
mm with the dVRK. In this paper, we explore the practi-
cality of achieving transformational error minimal enough
for implementing grasping and needle extraction. We explore
calibration methods that are comparatively not nearly as data-
intensive as the aforementioned techniques, which require
additional sensors as in [28] or extensive raw data collection
as in [5, 19, 30].

B. Needle Tracking

Prior work on needle tracking includes using coloration to
mark a suturing needle and track its position and orientation.
D’Ettorre et al. [5] labeled suturing needles with a green
marker on either endpoint of the needle and at the center
of the needle in order to streamline pose registration and
command the dVRK to grasp at the central green marker
and Speidel et al. [33], Sen et al. [31], and Nageotte et al.
[24] used a similar color-based segmentation technique for
pose registration. Kil et al. [14] analyzed suturing needle
position and orientation for the sake of assessing suturing
skill and technique in surgeons using a high-contrast, LED
backlit workspace for ease of needle segmentation.

These works highlight a common obstacle across a variety
of automated suturing subtasks of accurately segmenting a
suturing needle real-time without the use of visual markers.
In contrast, we study needle segmentation in situations
including workspace lighting variation, a tissue phantom
with visible defects, and no color-based markers for tracking
suturing needles.

C. Suturing Subtask Automation

Learning from both physical and artificial expert demon-
strations has been used in prior work to automate various
suturing subtasks [17, 25, 35, 36]. Schulman et al. [29]
explored performing different suturing trajectories including
insertion and extraction by learning from demonstrations
and using a non-rigid transformation to adapt the task to
a warped environment subject to rotations, stretching, and
scaling compared to the demonstration environment. This
approach uses manual annotations to map a coordinate frame
in a demonstration to a coordinate space in a newly warped
scenario. The tasks were scaled up several times larger than
suturing scenarios to provide an error margin on the order
of centimeters. In this paper, we explore needle extraction

Priya Sundaresan


Priya Sundaresan




Fig. 2. This diagram defines terms that are used throughout the paper,
namely major protrusion, minor protrusion, grasp point, and pull vector.
The side view is a generic angled view of the workspace while the top view
visualizes the embedded needle seen from the overhead endoscopic frame.

without demonstrations with error tolerance within a margin
on the order of millimeters.

Sen et al. [31] approached the task of suturing as a con-
vex optimization problem with the entry and exit positions
for a given “wound” trajectory on a surgical phantom as
constraints and demonstrated execution of multilateral throw
suturing at 30% of human speeds. Drawing from this work,
we focus on real-time segmentation, planning, and extraction
from arbitrary locations on a tissue phantom, rather than a
pre-planned location near a known insertion point.

III. PROBLEM STATEMENT

The algorithm is provided an endoscopic image of the
workspace containing a partially embedded suturing needle.
The visible components of the needle are segmented to
determine a point on the needle to grasp it and a point in
the workspace to pull it to.

A. Definitions and Notation

In this paper, we will use the following notation:
• We denote a vector #»x ∈ R3 in the camera frame using

a superscript c as in #»x c = [cx, cy, cz]
T . The three-

dimensional camera coordinate frame is constructed by
finding corresponding chessboard corner points in both
the left and right stereo cameras and using their pixel-
wise disparity to infer depth.

• We denote a vector #»x ∈ R3 in the base frame of the
PSM of the dVRK using a superscript b as in #»x b =
[bx, by, bz]

T .
• The orientation of the PSM ∈ R3 in the base frame

of the PSM is given by
#»

φ = [φy, φp, φr]
T , where the

elements are the yaw, pitch, and roll, respectively, which
define the orientation of the tooltip.

• Scalars are represented using plain letters (e.g. α).
• A transformation ∈ R3×3 from the camera frame to base

frame or base frame to camera frame is represented as
cTb or bTc, respectively.

• A vector ∈ R3 transformed from the camera frame to
the base frame is given by #»x b = cTb #»x c and vice versa.

• We define the minor protrusion and the major protru-
sion to be the smaller and larger segments of a needle

protruding from a phantom once embedded (See Figure
2).

• We define the grasp point to be the point on the needle
where the PSM gripper encloses the needle and the pull
vector to be a point in space where the gripper and its
contained needle can extract the needle (see Figure 2).

• A needle is considered fully extracted if the minor
protrusion is completely freed from the phantom after
a pull, and a partial extraction occurs when the needle
remains partially embedded.

B. Assumptions

1) Needle Pose: We assume that upon insertion of a
suturing needle into the tissue phantom, the majority of the
needle is protruding from the exit point on the phantom,
and there is a minor protrusion of the needle at the point of
the insertion that must be guided through the exit point to
achieve extraction. This reasonably assumes that a supervis-
ing surgeon would be able to insert the needle thoroughly
and simplifies the extraction protocol. We assume that both
protrusions are unobscured in the endoscope camera feed
and are not physically occluded to ensure a grasp is possible
in each scenario. Furthermore, we assume that the minor
protrusion can be approximated as a linear segment due to
its minimal size despite the natural curvature of the suturing
needle, and that the line of best-fit of the minor protrusion
is a permissible heuristic for the direction of pull required
to achieve extraction (Figure 2).

2) Equipment: We assume access to an fixed overhead
1920× 1080px endoscopic stereo camera which is standard
across da Vinci systems. The endoscope is situated above
the tissue phantom and the workspace is illuminated by a
standard surgical lamp with adjustable intensity. We assume
the tissue phantom is a deformable, flat 7.5×7.5cm silicone-
based platform and that the phantom may have physical
defects or discoloration in areas. We use one PSM of the
dVRK equipped with a large needle driver, or gripper-based
end effector (See Figure 3). With fully open jaws, the gripper
width is 10mm across with a range of 75◦.

3) Experimental Setup: We assume that there is initially
one suturing needle embedded into the tissue phantom that
is graspable by the large needle driver with fully open
jaws. We do not assume access to force sensing or haptic
feedback as in [23]. Lastly, we assume needles can be
successfully extracted by pulling a constant distance from the
grasp point, a simple, experimentally reliable heuristic that
tends to overestimate the actual distance needed to achieve
extraction. This constant, the magnitude of the pull vector,
jointly characterizes the needle extraction action with the
pull direction and is hand-tuned to be 350px in a segmented
image.

C. Input

The input consists of one image of the embedded needle
taken from the endoscope equipped by the dVRK.
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Fig. 3. Experimental setup.

D. Output

The output is a grasp point and a pull vector. The grasp
point is a point on the needle to grasp and the pull vector
defines the direction to pull the needle. Both points are in the
PSM frame. Extraction is considered successful if the PSM
pulls the needle completely out of the phantom.

IV. ALGORITHMS

A. Physical Calibration Algorithm

We learn a mapping between the base frame (PSM frame)
and the endoscope frame using a corrective rigid body trans-
formation on a set of corresponding points in the base and
endoscope frames [18]. We evaluate this approach relative to
standard approaches in Section V.

We locate a 5× 5 chessboard grid in both the endoscope
frame and the PSM frame, giving { #»x c1,

#»x c2, . . . ,
#»x c25} ∈ R3

and { #»x b1,
#»x b2, . . . ,

#»x b25} ∈ R3, respectively.
The close proximity of the left and right cameras, which

yield a 3D coordinate frame using ray triangulation and
pixel-wise disparity, can lead to scene geometry distor-
tion and a lack of accurate depth perception. To correct
for this, we project each #»x ci to the best-fit plane of
{ #»x c1,

#»x c2, . . . ,
#»x c25} prior to doing a standard rigid body

transformation.
Define A ∈ R25×3 as a one-padded matrix of the x and y

coordinates of the scene points:

A =


#»x c1[0]

#»x c1[1] 1
#»x c2[0]

#»x c2[1] 1
...

...
...

#»x c25[0]
#»x c25[1] 1


Define #»z = [ #»x c1[2]

#»x c2[2] . . . #»x c25[2] ]T ∈ R3 to be
the vector of the z coordinate of the scene points.

The vector of planar coefficients #»v , is the least squares
solution to A #»v = #»z . The corrected z coordinate vector of
the scene points,

#»

z′, is given by:

#»

z′ = a


#»x c1[0]
#»x c2[0]

...
#»x c25[0]

+ b


#»x c1[1]
#»x c2[1]

...
#»x c25[1]

+ c


1
1
...
1

 (1)

where a, b, c = #»v [0], #»v [1], #»v [2] are the coefficients in the
standard normal form for a plane.

Let #»x
′c
i = [ #»x ci [0]

#»x ci [1]
#»

z′[i] ]T , or the original #»x ci with
a corrected z-coordinate.

Then, we learn cTb as the rigid body transformation
between { #»x

′c
1 ,

#»x
′c
2 , . . . ,

#»x
′c
25} and { #»x b1,

#»x b2, . . . ,
#»x b25} as

in [32].

B. Camera Calibration Algorithm

In all segmentation methods used, we use only the left
camera contained in the stereo endoscope to detect a set
of points of interest (i.e. contours, centroids, grasp points,
pull points, etc.) { #»x cL1 , #»x cL2 , . . . , #»x cLn } and locate them in
the right camera by learning the rigid body transformation
cLTcR between the left and right cameras on a known set
of corresponding chessboard points in each respective 2D
frame. This transform has an associated error of 2.55px,
and results in a set of points { #»x c1,

#»x c2, . . . ,
#»x cn} in the 3D

endoscopic frame. This reduces the complexity of the seg-
mentation algorithm by preventing the need to exhaustively
find contours in two separate images and also allows us to
take advantage of the favorable camera quality of the left
camera over the right, which is specific to our endoscope.

C. Needle Segmentation Algorithm

The input to the needle detection system is a raw RGB
endoscopic image of the workspace. This image must be
preprocessed to remove noise and then filtered by contour
size and shape to segment needles (see Figure 4).

1) Preprocessing: We convert an input workspace image
to grayscale and threshold it using Otsu’s method, which
exhaustively finds the binarization that minimizes intra-class
variance amongst pixels categorized as dark or light [26].
This step makes the thresholded image robust to varying
lighting conditions, helps to normalize shadows, glare, and
highlights on embedded needles, and suppresses visual dis-
tractions such as defects on the tissue phantom. We test
robustness to these conditions in Section V.

2) Contour Segmentation: We detect and iterate through
all contours in the preprocessed image using the approach
in Suzuki et al. [34] to find the major protrusion of the
embedded needle. A contour is a curve joining a set of
continuous points { #»x c1,

#»x c2, . . . ,
#»x cn} with shared coloration

or intensity [1], and a contour is considered a valid major
protrusion candidate if the raw contour area is within a fixed
margin and the area of the contour fit to an elliptical shape
(denoted E and found using the Fitzgibbon least squares
method) is also within a fixed margin [6] (see Figure 4).

The purpose of the raw area filter is to disregard contours
that are too large or small to be considered part of a needle.
The filter for the ellipse-fit contour draws from the fact that
an embedded needle is capable of appearing anywhere from
linear at a given insertion angle to nearly semicircular. In the
former case, the E is expected to be very similar in area to
the raw area lower bound, since the natural contour and E are
expected to look like roughly linear segments. In the latter,
E is expected to be similar in area to the natural circular
area traced out by the ellipse-fit of a non-embedded suturing
needle contour resting on its side.



Fig. 4. Segmentation Pipeline. 1. Raw input RGB Image. 2. Otsu
thresholded image. 3. Exhaustive contour search yields the major protrusion
(blue), verified by fitting an ellipse (green) and ensuring the area of the
raw contour and the ellipse-fitted contour is properly bounded. The minor
protrusion (white) is also found iteratively and the grasp/pull is planned.

A contour that satisfies these bounding conditions is
considered a valid major protrusion P and is defined as:{
{ #»x c1, . . . ,

#»x cn}
∣∣∣αL < ∫∫

DR

dA < αH , εL <

∫∫
DE

dA < εH

}
where αL and αH represent the raw contour area con-
straint for DR, the region enclosed by the raw contour,
and εL and εH represent the raw contour area constraint
for DE , the region enclosed by the contour fit to an el-
lipse. αL, αH , εL, and εH are hand-tuned to be 1800px2,
20000px2, 1300px2, and 210000px2, respectively.

Once P has been identified, we compute a central grasp
point on the contour by first determining the center of mass
#»x cPCOM

of the contour from its moments as outlined in [1].
Since suturing needles can appear semicircular, the center

of mass may be concentrated away from the contour itself
but centered within the hollow of the curve. We consider
a valid grasp point #»g c to be on the major protrusion itself
however, so we take the grasp point to be the closest point
on the contour to the center of mass:

#»g c = argmin
#»x c

i∈P
|| #»x cPCOM

− #»x ci || (2)

Lastly, we find the major protrusion’s associated minor
protrusion, R. We iterate through all image contours within
an experimentally-determined area range (250 to 2000px2)
specified for minor protrusions and within a fixed radius
(120 to 400px2) of the major protrusion. The purpose of
this second condition is to ensure that in cases where a
major protrusion is segmented partially instead of fully (see
Figure 5: trials 3 and 4), the predicted minor protrusion
is not actually part of the major protrusion. Bounding the
candidates to be a fixed distance away from the major
protrusion ensures that a split major protrusion does not yield
a predicted major/minor protrusion pair, and setting an outer
bounding radius ensures that the minor protrusion selected is
a reasonable choice rather than a stray mark far away from
the major protrusion. Given this filtered set of candidates,
the contour with a center of mass that is is closest to #»g c in
terms of Euclidean distance is selected as the corresponding
minor protrusion.

D. Path Planning and Physical Extraction

With a major protrusion P with a grasp point #»g c and its
associated minor protrusionR identified, we determine a pull
vector #»p c, or the offset the grasp point must be displaced to
extract a needle, using analytical methods.

We assumed that the set R could be linearly approximated
due to its small size and we further assumed that the
direction of insertion is a reasonable heuristic for direction
of extraction, so it follows that the best-fit line of points in
R provides a direction for pull for P . We take the direction
of the pull to be the slope of the least-squares best-fit line of
points in R, denoted #»mc. Given #»mc and #»g c, we compute
#»p c with direction #»mc and || #»p c|| = 350px, the standard
hand-tuned offset between grasp and pull points across all
scenarios.

Using the corrected transformation cTb computed in the
calibration phase, we locate the grasp point #»g b and pull
vector #»p b in the base frame of the PSM as #»g b =c Tb #»g c

and #»p b =c Tb #»p c

From any fixed orientation
#»

φ , the PSM first moves to #»g b

with opened jaws, grasps the suturing needle, moves to #»p b,
and releases the needle to complete the extraction task.

V. SEGMENTATION EXPERIMENTS

In this experiment, the system and baselines are evaluated
for needle segmentation accuracy and robustness on a dataset
of images collected from the experimental setup.

A. Experimental Setup

We follow the experimental setup described in Section
III, with the overhead workspace lamp intensity set to 50%
brightness, which we found produces less glare from the
needle while still illuminating the workspace. The algorithm
is evaluated for robustness to lighting variation.

B. Segmentation Confidence

We introduce a segmentation confidence metric δ given
(P, E ,R) for images as follows:

δ =
Eminor
Emajor

· 1{αmin<
∫∫

DR
dA} · 1{αmaj<

∫∫
DP

dA} (3)

δ is the aspect ratio of the ellipse fit to P — the ratio of its
minor to major axis — if both a minor/major protrusion are
identified and the area of the minor and major protrusions are
above hand-tuned area thresholds (αmaj = 1900px2, αmin =
300px2), and 0 otherwise. It is maximized at 1 when E
is semicircular and decreases as E is less eccentric. The
rationale for this is that we are more confident that a detected
curved contour belongs to a suturing needle than a linear
contour, due to the inherent curvature of a needle. Addi-
tionally, we have no confidence in a segmentation without
a minor/major protrusion pair detected. In categorizing the
failure modes of Section V-C based on the confidence of
each of the segmentations, we find that a lack of confidence
in segmentation tends to introduce a greater spread of failure
modes and makes segmentation of the major protrusion more
challenging (Type C error more prevalent, see Figure 5).

C. Segmentation Accuracy: Setup and Failure Modes

We manually inserted one suturing needle in varying po-
sitions and orientations into the tissue phantom and recorded
an endoscopic image of the workspace 160 times. For each



Fig. 5. Results for 9 out of the 160 trials of embedded needle detection and
extraction planning with the setup in Section V-A. Blue and white outlines
are the detected contours of the major protrusion and minor protrusion,
respectively. The black line segment represents the predicted pull vector.
The grasp and pull was successfully planned in 7/9 images, except for
6 where the incorrect minor protrusion was identified and in 9 where
no major or minor protrusions were detected due to the effect of uneven
shadows/highlights and specularities.

image, we ran the segmentation and path-planning algorithm
and overlaid predicted grasps and pulls on each image, and a
human judge noted the appropriateness of both the planned
grasp and the planned pull direction and the failure mode
if applicable. For each trial, the outcome(s) were specified
as follows, noting that images could be categorized under
several failure modes (e.g. wrong minor protrusion, no major
protrusion would be labeled as A, D):
• A: Contour misclassified as a minor protrusion (im-

proper pull direction)
• B: No minor protrusion detected (no pull direction)
• C: Contour misclassified as a major protrusion (im-

proper grasp)
• D: No big protrusion detected (no grasp)

D. Segmentation Accuracy: Results

We ran the segmentation algorithm across all 160 static
images, of which a small subset of the results is visualized
in Figure 5. The results suggest the reliability of our seg-
mentation and path-planning algorithm.

Of 160 needle trials, in 17 trials (10.63%) no needle was
detected. Of the remaining 143 trials (89.38%), the major
protrusion was correctly identified in 139 (97.20%) trials,
the minor protrusion was correctly identified in 123 (86.01%)
trials, and an appropriate extraction (correct major and minor
protrusions identified) was planned in 122 (85.31%) trials.

Type A error occurred in 9/160 images (5.63%), Type
B error occurred in 21/160 images (13.13%), Type C error
occurred in 4/160 images (2.50%), and Type D error occurred
in 17/160 images (10.63%).

We observe that the occurrence of inappropriate grasp
was 4.25 times less likely than the occurrence of no grasp
detected (%Type D

%Type C ), and that the occurrence of a misdirected
pull was 2.33 times less likely than the occurrence of no pull
detected (%Type B

%Type A ) across the test set of images, indicating

that the proposed algorithm is relatively conservative in the
context of planning needle extraction, which is especially
relevant in a medical context.

The majority of failure modes were accounted for by
Type B and Type D error, and these cases occurred most
often when the inserted needle was placed on the perimeter
of the workspace where the overhead workspace lighting
was most dim and the needle contour was indistinguishable
from its darkened containing region. Type A error was most
frequently attributed to cases in which a dark defect on the
phantom was recognized as a minor protrusion, and Type C
error was attributed to cases in which the needle appeared
close in size in both protruding ends, and its minor protrusion
was taken to be the major protrusion.

E. Thresholding Baseline Comparison

We carry out segmentation on the same test set and
experimental setup as in Section V-D but use a global
threshold instead of Otsu’s thresholding to compare segmen-
tation accuracy. Using a global threshold level of 100, fine-
tuned based on the workspace lighting, an appropriate grasp
was planned in 84/160 images (52.50%), an appropriate
pull given a planned grasp was planned in 43/84 images
(51.19%), an an appropriate pull was planned overall in
43/160 images (26.88%). The occurrence of Types A, B,
C, and D error were 60.0%, 13.13%, 38.75%, and 8.75%,
respectively. The comparison of both segmentation accuracy
and failure mode occurrence suggests the effectiveness of
Otsu’s method over a global threshold.

F. Robustness

In these experiments, we evaluate the system’s robustness
to various sources of noise. Needle segmentation accuracy
is evaluated for images that are artificially lightened and
darkened. The segmentation accuracy is also tested under
the presence of textures and other objects in the images.

Fig. 6. Failure Modes vs. Segmentation Confidence. We show the occur-
rence of failure modes in images grouped by segmentation confidence. A and
C correspond to wrong minor/major protrusions detected, respectively, and
B and D correspond to no minor/major protrusions detected, respectively.
We note the slight recurrence of Type A error as confidence increases. We
hypothesize that this is due to the fact that needles segmented with higher
confidence are likely to have a larger, more circular major protrusion and
smaller minor protrusion, making the minor protrusion more difficult to
identify.
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1) Lighting Robustness: The above experiment was re-
peated on the same test set but with artifically brightening all
160 images using a gamma correction of 0.5. We also repli-
cated the experiment with artificially darkening all images
with a gamma correction of 1.5, and the results for grasp
and pull detection were unchanged. This result suggests
the robustness of the segmentation algorithm to lighting
fluctuations and is likely attributed to Otsu’s thresholding.

2) Robustness to Workspace Occlusions: The segmenta-
tion algorithm was also tested on a set of 41 images with
an experimental setup as in Section V-A, but with strands
of black and white suturing thread arbitrarily placed on the
phantom to test the system’s robustness to occlusions that
are realistic in practice.

In this scenario, an appropriate grasp was planned in 30/41
images (73.1%), meaning the major protrusion was appro-
priately identified rather than a segment of thread or other
contour, and of those cases, an appropriate pull was planned
in 28/30 of cases (93.3%). An appropriate pull was planned
overall in 28/41 (68.3%) of the images. The occurrence of
Types A, B, C, and D error were 9.76%, 21.95%, 24.39%,and
2.44%, respectively, with Types A and C error being more
prevalent in this experiment compared to a non-occluded
environment due to suturing thread misidentified as a needle.

VI. PHYSICAL EXPERIMENTS

The full system is evaluated on a hernia mesh phantom
with randomly embedded needles with a baseline calibration
method and the proposed corrective calibration method.

A. Autonomous Extraction Accuracy: Setup/Failure Modes

We conducted 100 physical trials of extraction on arbitrar-
ily inserted needles given an appropriate segmentation and
grasp/pull plan, verified by a human judge, using both cali-
brations. We compare both calibrations because a traditional
baseline strategy for extracting needles is not apparent in this
context to the best of our knowledge. A trial is considered
successful if the robot is able to autonomously extract the
needle from the phantom fully. The potential failure modes
are categorized as follows:

• E: Missed grasp
• F: Gripper strikes and displaces needle during approach
• G: Partial extraction from phantom

These failure modes are not mutually exclusive, as a given
trial could be categorized as E, F if the dVRK hits a needle
during descent, causing it to miss a grasp.

B. Needle Extraction: Uncorrected Rigid Body Transform

Using a standard rigid body transformation, the dVRK
successfully grasped an embedded needle in 67.0% of trials
and fully extracted the needle in 47% of cases overall, or
47/67 (70.15%) cases where a grasp was also secured. The
occurrence of Types E, F, and G error were 34.0%, 10.0%,
and 19.0%, respectively.

Fig. 7. Trials of Robustness to Workspace Occlusions segmentation
experiment. Top (1, 2): Two appropriately segmented images isolating
suturing needles from suturing thread with appropriately planned pull
vectors. Bottom (3, 4): Suturing thread mistakenly segmented as needles.

C. Needle Extraction: Corrected Rigid Body Transform

With the corrected rigid body transformation, the dVRK
grasped the embedded needle in 75% of trials and fully ex-
tracted the needle in 53% of cases overall, or 53/75 (70.67%)
of cases where a grasp was successful. The improved perfor-
mance of needle extraction suggests the effectiveness of the
fine-grained calibration in perceiving depth and accounting
for scene geometry distortion. The occurrence of Types E,
F, and G error were 24.0%, 10.0%, and 23.0%, respectively.

VII. CONCLUSION AND FUTURE WORK
This paper proposes automating suturing needle extraction

via a multi-step process of calibration, needle detection,
path planning, and physical extraction. Experiments suggest
that this task can be performed robustly and in relatively
unstructured scenarios.

To improve segmentation, we will explore semantic seg-
mentation on embedded needle amongst other surgical
workspace objects. We also propose point-source lighting
to identify needles based on specularity. We will explore
the improvement of physical extraction, particularly through
a non-linear heuristic for pull direction, greedy extraction
policies for reattempting on failed grasps or pulls, and visual
servoing. In addition, we will look at ways to use domain
randomization to transfer needle extraction in simulation to
physical execution with the dVRK.
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