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Abstract—1In the Fundamentals of Laparoscopic Surgery
(FLS) standard medical training regimen, the Pattern Cutting
task requires residents to demonstrate proficiency by maneuver-
ing two tools, surgical scissors and tissue gripper, to accurately
cut a circular pattern on surgical gauze suspended at the
corners. Accuracy of cutting depends on tensioning, wherein
the gripper pinches a point on the gauze in R3 and pulls to
induce and maintain tension in the material as cutting proceeds.
An automated tensioning policy maps the current state of the
gauze to output a direction of pulling as an action. The optimal
tensioning policy depends on both the choice of pinch point
and cutting trajectory. We explore the problem of learning a
tensioning policy conditioned on specific cutting trajectories.
Every timestep, we allow the gripper to react to the deformation
of the gauze and progress of the cutting trajectory with a
translation unit vector along an allowable set of directions.
As deformation is difficult to analytically model and explicitly
observe, we leverage deep reinforcement learning with direct
policy search methods to learn tensioning policies using a finite-
element simulator and then transfer them to a physical system.
We compare the Deep RL tensioning policies with fixed and
analytic (opposing the error vector with a fixed pinch point)
policies on a set of 17 open and closed curved contours in
simulation and 4 patterns in physical experiments with the
da Vinci Research Kit (dVRK). Our simulation results suggest
that learning to tension with Deep RL can significantly improve
performance and robustness to noise and external forces.

I. INTRODUCTION

In robotic surgery, scissors are one of the most effective
tools for cutting and removing thin tissue [19]. Deformable
materials, such as soft tissue, are most effectively cut when
held in tension. This requires a second tool to pinch and
tension the material as it is being cut. The optimal direction
and magnitude of the tensioning force changes as the cutting
progresses, and these forces must adapt to any deformations
that occur. Algorithms to automatically generate tensioning
policies for a given cutting trajectory can assist both human
surgeons [24] and automated surgical cutting procedures to
improve the reliability and accuracy of surgical cutting [17,
21].

We formalize ftensioning as a position constraint on a
point called a pinch point on the surface of a deformable
sheet. The pinch point pins a position on the sheet at a fixed
location in R? and tension is generated by translating the pinch
point in an allowable set of directions. This raises several
questions in optimal choice of these time-varying tensions:
(1) selecting the pinch point, (2) designing a tensioning
policy, (3) and generating the cutting trajectory. While the
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Fig. 1: Surgical Pattern Cutting involves tensioning and cutting
deformable tissue phantoms. We propose the use of a simulator
(left) and Deep Reinforcement Learning to learn robust tensioning
policies that pinch the guaze and adaptively tension it during the
Pattern Cutting task. The trained policy is then executed on the
physical system (right).

manipulation of soft bodies is a well-studied field [2, 4, 20,
31], these optimization problems can be quite challenging
without closed-form solutions. Furthermore, we would like
the solution to be in the form of a closed-loop control policy
that adaptively maps the state of the material to tension.
This paper presents a tensioning planner using Deep
Reinforcement Learning over a finite-element model to
simulate the effect of different tensions and learn a tensioning
policy. We focus on tension planning for a generalization
of the Pattern Cutting training task that is included in The
Fundamentals of Laparoscopic Surgery (FLS) [25] and
Fundamental Skills of Robotic Surgery (FSRS) [30] to cut
open and closed cutting contours in a 10cm x 10cm sheet
of gauze. We focus on tensioning at a single point on the
surface of the gauze. The input to the planner is a desired
cutting contour. The planner selects a tensioning point and
sequence of tensioning actions as the surgical scissors follow
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Fig. 2: The algorithm for generating tensioning policies for cutting using Deep RL involves several subcomponents: 1) the input contour is
segmented, 2) a set of candidate grasp/pinch locations for tensioning are chosen, 3) search is performed to select the order to cut segments
for all candidate pinch points, and 4) tensioning policies are found for each pinch point/segment ordering using Deep RL. The pinch point,
cutting trajectory, and policy which have the highest score are then selected. For details on each component, see Section V.

a pre-planned trajectory. The tensioning policy is learned
with a state of the art policy gradient algorithm, Trust Region
Policy Optimization [27] using a Multi-Layer Perceptron with
2-hidden layers.

Simulation results evaluating robustness suggest that the
Deep RL policy performs on average 43.3 £8.6% better than
a non-tensioned baseline over a variety of open and closed
contours. Our experiments that suggest the policies are not
sensitive to bounded changes in gravity, tissue elasticity, and
resolution. We also evaluate the learned tensioning policies
with physical experiments on the da Vinci Research Kit
(dVRK). The gauze is registered to the simulator using colored
fiducial points tracked with a computer vision system. We
add these visually tracked fiducial points to the system state
for Deep RL training to represent the environment.

Summary of Contributions:

1) We propose an algorithm for learning tensioning policies
using Deep RL, specifically for Multilateral Surgical Pattern
Cutting in 2D Orthotropic Gauze.

2) We describe an implementation of the algorithm and
present simulated and physical experimental accuracies and
sensitivity results of the proposed procedure using a) an FEM
fabric simulator and b) a working dVRK surgical robot.

II. RELATED WORK
A. Deformable Manipulation in Robotic Surgery

Manipulation of deformable materials, particularly cutting,
is a challenging area of research interest in robotic surgery
[21, 22] as well as in computer graphics and computational
geometry [7, 33]. The use of expert demonstrations has been
considered in prior work as an alternative to explicit models
and simulations when studying and handling deformations in
the environment. For example, Van den Berg et al. [32], Osa et
al. [23], and Schulman et al. [26] all approached manipulation
of suture material using Learning From Demonstrations (LfD),
an approach that uses demonstration trajectories to learn
how to execute specific tasks. In this paper, we explore the
feasibility of a self-learning approach using Deep RL and a
simulator to improve control in surgical pattern cutting.

B. Reinforcement Learning for Deformable Manipulation

RL has been a popular control method in robotics when
dynamics are unknown or uncertain [16]. There are a few
examples of RL applied to deformable object manipulation,
e.g. folding [3] and making pancakes [5]. The recent mar-
riage between RL and Neural Networks (Deep RL) opened
a number of new opportunities for control in non-linear
dynamical systems [18]. An obstacle to applying Deep RL
to physical robots is that large amounts of data are required
for training, which makes sufficient collection difficult if not
impossible using physical robotic systems—leading to our
study of simulation-based learning.

C. Simulation-based Training

There has been some recent work using simulators to
train policies [1, 8, 9] before applying the policies to the
physical system. For example, Frisken et al. [11] discuss a
linked volume representation that enables physically realistic
modeling of object interactions including collision detection
and response, 3D object deformation, and interactive object
modification. In this work, we explore a finite-difference
model for simulating the deformation and cutting of the
gauze [29]. We choose the finite-difference model for its
computational efficiency, which is important since we are
running 10,000 trials with RL.

III. PROBLEM STATEMENT AND OVERVIEW

This section overviews the tensioning problem, and our
application of tensioning to a generalization of the pattern
cutting task from Fundamentals of Laparoscopic Surgery.

A. Deformable Sheet Cutting

We are given a rectangular planar sheet and a simple
algebraic desired cutting contour of bounded curvature, which
can be either closed or open. While the contour can intersect
the edge of the sheet, it cannot intersect itself. This sheet
is fixtured at the four corners. The objective is to cut along
this contour and minimize damage to the material not on
the contour. A motivating instance of this problem is a
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Fig. 3: The dVRK arms have limited approach angles, and cutting
can only happen along a vector where the angle 6 from the forward
direction from the base of the arm is less than or equal to 90
degrees in magnitude, with equality only permitted for isolated
points. This requires segmenting contours into multiple sections for
cutting. Notch and termination points are locations at the limits of
the cutting arm’s range of motions, or those orthogonal to the main
approach direction of the arm, and the direction of cutting is always
in the main approach direction.

generalization of the pattern cutting task from Fundamentals
of Laparoscopic Surgery (FLS), which is a standard training
regimen for medical students in laparoscopic surgery [25].
A typical pattern cutting task features a 50 mm diameter,
2 mm thick circular pattern marked on a 10x 10 cm square
of standard surgical gauze suspended by clips as shown in
Figure 1.

1) Kinematics of Scissor Cutting: Robotic scissors are a
popular tool for cutting thin sheets. However, scissor-based
cutting is kinematically constrained. Cutting can only happen
in the direction in which the scissors are pointing. If the
scissors cannot be rotated in all 360 degrees, it may not be
possible to cut a complex contour that cannot be completed
in a single, smooth trajectory. For many practical robots this
is often the case, e.g., the physical constraints of the da
Vinci wrist restrict motion to +90° of articulation [14] from
a fixed position, yaw, and roll. Therefore, a countour has to
be broken into smaller segments, where each segment is cut
from a different starting position (Figure 3).

2) Scissor Cutting in Deformable Sheets: Mahvash et al.
describe the dynamics of scissor-based cutting of deformable
materials in [19]. Essentially, scissors apply a strong local
deformation around the blades stretching the material until
it tears. The elasticity of the material determines how much
of such a force it can resist before tearing. Therefore, such
materials are best cut when held in tension—i.e., the material is
stretched by a secondary tool. This means that the material’s
ability to resist the cut is reduced because some of that
energy goes into resisting the stretching. In addition to the
elasticity effects, tensioning also improves the robustness to
deformation when cutting complex contours. As more of the
sheet is cut, parts of the contour may change position due to
deformation. Tensioning adds an additional degree of freedom
to prevent such deformations from drastically changing the
position of the contour during execution.

B. Definitions and Notation

Let Gy, C R? be a three-dimensional global coordinate
frame. We assume an infinitely thin 2-D sheet that lies on
a 2D manifold in G, .. We denote the set of points on this

sheet as X, and ¥(6) is the locations of these points in the
global frame.

1) Cutting: We assume that one arm of the robot is
designated as the cutting arm and the other as the tensioning
arm. A cutting contour is a sequence of points C on the
surface of the sheet. The cutting arm operates in an open-
loop trajectory that attempts to cut along Cp, the position of
the cutting contour in the global frame at time zero. Error is
measured using the symmetric difference between the desired
contour on the sheet and the achieved contour cut. These will
be different due to deformation of the sheet during cutting. Let
X be the set of points inside a closed intended trajectory and
let Y be the set of points inside a closed simulated trajectory.
The symmetric difference is then the exclusive-or A ® B of
the two sets. For open contours, the contours are closed by
forming boundaries with the edges of the sheet.

Problem 1. Cut Planning Problem: Assuming that the
cutting arm cannot rotate over 90 degrees with respect to
the horizontal axis in the direction of entry, problem 1 is to
segment the cutting contour into K segments, and identify
notch points (where the cutting arm should enter the sheet),
termination points (where the segment is complete), and order
in which the segments should be cut. We assume the number
of segments of the input contour to be less than five and
make no special assumptions for segments that require the
cutting of a notch for the scissors to enter.

2) Tensioning: Since the cutting is open-loop it cannot
account for deformation, and this is why we need tensioning
to apply feedback based on the state of the sheet.

Definition 1 (Tensioning): Let s € ¥ be called a pinch
point. Tensioning is defined as constraining the position of
this pinch point to a specific location u € Gy y,:

T = (s,u)

In this paper, we consider a single pinch point for an entire
cutting trajectory. This allows us to define a tensioning policy:

Definition 2 (Tensioning Policy): Let E,(G) be the locations

of all of the points on the sheet in the global coordinate frame
at time ¢. For a fixed pinch point s, a tensioning policy 7 is
a function where A, = u; 11 — u;:

7:29(1) A,
This naturally leads to two complementary problems.

Problem 2a. Pinch Point Selection Problem: For a fixed
tensioning policy 7, problem 2a is to find the pinch point s that
minimizes the symmetric difference of the desired vs. actual
contour subject to kinematic and reachability constraints.

Problem 2b. Tensioning Policy: For a fixed pinch point u,
problem 2b is to find a tensioning policy that minimizes the
symmetric difference of the desired vs. actual contour. We
synchronized the arms’ actions by waiting for the tensioning
action at fixed time intervals.
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Fig. 4: (A) We simulate the sheet with a finite difference method
with a rectangular mesh of vertices v coupled with ideal springs,
ni. (B) The parameters of the simulated sheet are elasticity 7, a
—z external gravitational force f(¢), and time-constants o, & that
determine the rate at which the sheet reacts to f(z)

C. Assumptions

Our planner makes several important assumptions about
the nature of the environment and task.

Al. Ideal Spring Deformations: We assume that the physics
of the sheet can be approximated using the finite element
method. We model the sheet as a discretized two-dimensional
array of point masses connected to their neighbors by springs
with a fixed spring constant.

A2. State Estimation: We randomly choose fiducial markers
to track the state of the sheet in the global frame. We assume
that this low-resolution information is sufficient to infer the
overall deformation of the cloth.

A3. Quasi-Static Planning: We assume that at each time-
step the sheet is in an equilibrium state and therefore do not
consider estimation of higher derivatives of the state.

A4. Bounded Cardinal Actions: We assume that controls are
bounded 1mm movements of the tensioning arm in the G,
plane.

A5. Zero-Force Cuts: We assume that the cutting arm does
not impart forces on the sheet other than what is needed to
tear the material.

IV. SIMULATOR MODEL

We use a finite-element simulator to plan the cutting
trajectories and optimize the tensioning policy.

A. Simulating a Deformable Sheet

A planar deformable sheet can be modeled as a rectangular
mesh of point masses connected by ideal springs of equal
length [6, 12] (Figure 4). Each point mass, a vertex of
the mesh, can translate in three dimensions. A constant
gravitational force is applied to each vertex, and tensioning is
modeled as displacement of a single vertex. These mesh points
represent a discretization of X and the simulator estimates
Il

The simulator is initialized with equally spaced mesh points
in the Z(()G) € G,y plane. The state is then iteratively updated:

5(6)

1 sim(EfG))

For each p € X, the updates have the following form:

prv1=0p; + 8(pr —pi-1)

-2

(p' eneighborsA—cut)

wp,—p)+F (D

where T is a spring constant, 7(p, — p;) is an idealized
spring model of the interaction between vertices, and F; is
an external force applied to the system (e.g. gravity). & and
0 are parameters that govern the time-constant of the system
and how quickly the sheet reacts to applied forces. Cutting is
simulated as removing vertices from the mesh (instantaneous
and quasi-static) along the cutting trajectory, i.e., the vertex no
longer has an effect on its neighbors. Tensioning is simulated
as a position constraint for a chosen pinch point s:

St = Uy

To model standard surgical gauze, we use the following
parameters: § =0.008, oo =0.99, 7= 1.0 and f(¢) is gravity.
We fit these parameters through trial and error, observing how
cutting trajectories deformed in real gauze vs. the simulator.
We tuned parameters in the simulator, until the failure modes
of the simulated rollouts appeared with similar frequency
to the corresponding physical failures. We use 625 vertices
(25 x 25) in our experiments to approximate the physical
gauze. We found that increasing the fidelity of the simulator
beyond 625 vertices quadratically increased the runtime of
the simulator but only provided marginal gains, which was
experimentally validated in Section VII-B. The simulator was
implemented in Python using Cython to write C extensions.
This sped up each run of the simulation by a factor of six.
A single simulation for cutting a prototypical closed contour
takes approximately 4 seconds on an Intel Core i7 desktop
computer.

V. PLANNING AND ORDERING CUT SEGMENTS

Before evaluating tensioning policies, we need to select
pinch points for tensioning and plan a cutting trajectory.

A. Pinch Point Planning

To address Problem 2a, we uniformly sample N = 30 mesh
points randomly from our feasible region of points in X to
generate a candidate set of pinch points P. This is referred to
as sample_pinch_points() in our algorithm. We define
the feasible region of vertices to be the region of X that does
not result in a collision of the tensioning arm with the cutting
arm. We use dynamic programming to generate this set of
vertices, and we model the cutting arm as a cylinder with
scissors extending in the direction of travel. N is chosen to
compromise between the runtime of the full algorithm and
the probability of selecting an optimal point. We also include
the centroid of the contour ¢(¢) in the set P as a pinch point
in addition to the sampled points. We train policies, running
the entire pipeline, for each of the candidate pinch points,
and select the point that results in the highest overall cutting
accuracy.



B. Segment Planning

The kinematic constraints of the da Vinci arms, such as
joint limits at the wrist and self collisions, preclude us from
completing the cutting task in one smooth trajectory. The
physical constraints of the da Vinci wrist restrict motion
to +90° of articulation [14] from a fixed pitch, yaw, and
roll in the forward direction along the base of the arm
(Figure 3). For our experiments, we chose the right da Vinci
arm to serve as the cutting arm. We segment the contours
and identify notch points (where the cutting arm enters the
sheet) and termination points for cutting. We use the methods
gen_segments(c) and exhaustive_search(g,K) for
segmentation of a parametric contour and creating an ordering
over the segments for executing the cut.

gen_segments(c) — To address problem 1, we find local
minima and maxima of the contours to locate a set of
candidate segments. We calculate an estimated directional
derivative along the trajectory towards the cutting arm. A
derivative changing from positive to negative signifies the
location of a notch. A negative to positive change marks
the end point of a segment. A conceptual illustration of this
procedure is shown in Figure 3. Our method assumes no
exactly vertical segments exist in the contour.

exhaustive_search(g,K) — Given a complete set of
executable segments, the sequence of cuts needs to be
specified. We posit that for any given set of segments, there
is an optimal ordering such that the simulated cutting error is
minimized. For experiments in this paper, we iterate through
all possible permutations of cutting ordering for each of
the candidate pinch points P, choosing the ordering and
subsequently trajectory plan that maximizes the simulation
score using a fixed tensioning policy. Although this means
K! simulations are required for K registered segments, we
assume that K is small for the majority of relevant cases.

VI. LEARNING THE TENSIONING POLICY
A. Trust Region Policy Optimization

The goal is to learn a policy for the tensioning arm such
that the error from the cutting trajectory to the marked contour
is minimized. We model the tensioning problem as a Markov
Decision Process (MDP) M:

M= <S>Aa‘§('7')vR(" ')7T>'

where the actions A are 1mm movements of the tensioning
arm in the x and y directions, and the states S are described
below. The action space is tuned so the policy can generate
sufficient tension to manipulate the cloth significantly over
a few timesteps. The dynamics model £ is unknown and
the time horizon T is fixed. Reward is measured using the
symmetric difference between the desired contour and the
achieved contour cut. The robot receives 0 reward at all
time-steps prior to the last step, and at the last time-step
T — 1 receives the symmetric difference. We do not shape the
reward, as symmetric difference is exactly the error metric
used for evaluation as well.

The Reinforcement Learning objective is to find a function
g : S +— A that optimizes the expected reward:

T
R(8) = E(, 4~y [Y_R(s5,a)] 2)
=0

To optimize 0, we leverage the TRPO implementation [27]
in Rllab [10]. TRPO is a policy gradient method that can
effectively optimize neural networks despite noisy estimates
of the gradient. Since R(0) is a stochastic quantity, TRPO
prevents excessive oscillation during optimization. We use
a neural network to parametrize the policy 7y, which maps
an observation vector to a discrete action. A two 32x32
Hidden Layer Multi-Layer Perceptron is used to represent
this mapping. Since neural networks are differentiable, we can
optimize the quantity R(6). The convergence of the policy
takes about 5 minutes on an Intel core i7 desktop and for
computational reasons, the experiments presented here are
trained up to 25 iterations.

B. Choice of State Space

Our experiments require a state space that is observable for
RL in both the simulator and in the real robot. The state space
is a tuple consisting of the time index of the trajectory ¢, the
displacement vector from the original pinch point u;, and the
location x; € R? of fiducial points chosen randomly on the
surface of the sheet. In all simulation-only experiments we use
12 fiducial points and for robot experiments we use between
8-12 fiducial points. This is a sample-based approximation
of tracking Z,(G). When a point is occluded by the robot arm
or cloth deformation, its last visible position is used until
it is visible again. The policy gradient algorithm learns a
state-feedback tensioning policy as a function of these states.

VII. SIMULATION EXPERIMENTS

In the first set of experiments, we compare Deep RL
to alternative tensioning approaches. We first evaluate the
techniques in terms of performance by calculating the
symmetric difference between the target pattern and actual
cut. Then, we compare the techniques in terms of robustness
by tuning the techniques for one simulated parameter setting
and then applying them to perturbations.

A. Cutting Accuracy

We manually drew 17 different closed and open contour to
evaluation in simulation, as illustrated in Table I. For each of
the contours, we evaluated four different tensioning methods:

o Not Tensioned: Single-arm cutting is performed with no
assisted tensioning other than the stationary corner clips
that fix the sheet in place.

o Fixed Tensioning: The material is pinched at a single
point with the gripper arm (with corner points still fixed
in place), but no directional tensioning is applied. We
simulate area contact by pinching a circular disc.

e Analytic Tensioning: Tensioning is proportional to the
direction and magnitude of the error in the 3D position
of the cutting tool and the closest point on the desired



TABLE I. Evaluation of Deep RL: For the 17 contours shown, we
evaluate the three tensioning policies described in Section VII-
A. We measure and report performance in terms of relative
percentage improvement in symmetric difference over a baseline of
no tensioning for the tensioning trials. The 95% confidence interval
for 10 simulated trials is shown for fixed, analytic, and Deep RL
tensioning, while the mean absolute symmetric difference error
is reported for the no-tensioning baseline experiments. The data
suggest that Deep RL performs significantly better in comparison
to the fixed and analytic baseline. The corresponding pinch points
used for fixed and Deep RL are indicated in red. The analytic
pinch point is the centroid of the shape.

Shape Tensioning Method
No-Tension Fixed Analytic Deep RL
1 \ 174 -20.69+4.44  -149.43+10.24  64.37+5.77
2 / 225 32.44+1.74 -117.78+£0.00  55.11+7.40
3 U 23.2 -21.1245.41 18.10+1.78 38.36+9.43
4 ( 102.9 7.484+0.62 30.42+1.45 36.15+3.97
5 Q/ 41.1 0.49+7.99 9.98+0.00 52.31+7.26
6 Q/ 42.0 55.00+£1.77 11.43+1.52 45.95+6.60
7 k/\ 40.2 22.64+1.14 3.73+1.46 33.83+£3.99
8 i 40.0 -1.25+0.82 1.754+2.83 35.50+4.67
9 E 66.6 2.854+2.60 34.68+2.25 28.38+4.98
10 @ 63.6 25.63+2.98 20.60+3.60 41.35+9.90
O

11 . 73.6 2.31+1.66 24.3240.98 56.11+8.99
12 O 79.3 22.82+4.51 55.49+0.38 63.56+3.61
13 O 94.3 3.29+2.05 27.15+0.32 34.04+5.87
14 @ 1.7 3.07+7.15 -2.51+0.61 39.89+8.20
15 ’ D 178.7 74.71+1.22 80.75+0.88 81.25+1.38
16 D 114.6 -8.03+2.16 31.06+0.62 29.06+8.81
17 @ 74.8 10.2942.08 28.34+2.07 0.80+7.03

Mean (%) 13.54+9.84 9.70+21.96 43.30+8.61

contour. The gain was hand-tuned on randomly-chosen
contours and is fixed to 0.01.

e Deep RL This policy is described in detail in Section VI.
A separate policy is trained for each shape, this requires
20 iterations of TRPO in the simulator.

For the Deep RL, the pinch point used was chosen by
the algorithm described in Section V and Section VI. For
the analytic tensioning model, the centroid of the contour
is used as the pinch point. For the fixed policy, the point
was chosen by random search over the feasible set of points.
Performance is measured using the symmetric difference
between the desired contour and the actual cut.

The averaged symmetric difference scores for each instance
and tensioning method are reported in Table I. The success
of the different tensioning algorithms are presented as the
percentage of improvement in symmetric difference score over
the non-tensioned baseline. The average of the scores over all
17 contours are also included in the table. For the selected
set of contours, Deep RL achieves the best average relative
improvement of 43.30%, the analytical method 9.70%, and
the fixed approach 13.54%.

B. Robustness

One concern with Deep RL is that it could overfit to

the simulation environment and would not be as robust as
the alternatives. We evaluate the robustness of Deep RL by
training it with particular simulation parameters and then
testing it in an alternative parameter setting.
1. Robustness to Resolution We first evaluate the learned
policy’s sensitivity to the resolution of the simulator. We
trained four different policies, each on a mesh composed of
different number of vertices (100, 400, 625, 2500). These
experiments were performed on shape 1, as illustrated in
Table I. We chose resolution parameters to cover a large
range of fidelity while maintaining the geometry of the
cloth. We used each of the four policies to cut meshes with
six different resolutions for ten rollouts each. Results are
presented in Figure 5 as the absolute symmetric difference
error (in number of vertices) per each trained policy when
simulated on a mesh of x points. Our results indicate that
policies trained on lower resolution simulation models still
result in comparable performance up to a very low resolution
(400 vertices). This suggests that increasing the fidelity of the
simulation environment provides diminishing returns for a
quadratically increasing runtime. We use this as justification
to limit the fidelity of our simulator for other experiments.

2. Robustness to Process Noise Deep RL was trained in a
noise-free simulated environment. Then, all of the approaches
were applied to shape 9 (see Table I) with increasing levels
of Gaussian noise, i.e. N(0,k) for k € 0, 1], added to the
mesh vertex position update (Eq. (1)). We ran three trials
for each policy at 10 different values of . Figure 5 depicts
the median relative percentage scores in terms of symmetric
difference for fixed tensioning, analytic tensioning, and deep
RL tensioning, over no-tensioning. We noticed that Deep RL
is at least as robust as the other approaches.

3. Robustness to Model Error We vary the magnitude of
the external force applied to each vertex in the —z-direction.
Deep RL is trained on f(z) = 2500 in (1). All four policies
are tested on varying magnitudes of f(¢) on shape 9, for
20 trials. We present results of this experiment in Figure 5.
When external forces are greater than this reference value, the
Deep RL tensioning policy performs consistently better than
the other policies. Both the Deep RL policy and the analytic
policy perform worse than no tensioning and fixed tensioning
for low force values. Intuitively, as the downward vertical
force (gravity) tends toward zero, the gauze behaves more
like a rigid sheet than a deformable material, so a simpler
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Fig. 5: a) Robustness to resolution: Deep RL was trained for four different mesh resolutions, and evaluated on six different resolutions.
The symmetric difference error (calculated in units of vertices) is normalized by the test environment resolution. Deep RL is relatively
robust to changes in resolution but the performance suffers as the difference between the mesh resolution used for training and testing
increases. b) Robustness to Process Noise: Deep RL was trained on a noise-free mesh and evaluated with different levels of Gaussian
noise added to the process model (Equation (1)). We plot the improvement of the fixed, analytic, and Deep RL tensioning over no
tensioning. Deep RL is at least as robust as the alternatives to noise. c) Robustness to Model Error: We evaluate the sensitivity of the
policies to varying levels of an unmodeled external force in Equation (1). For shape 9, Deep RL is trained using f(7) = 2500 indicated
by the red dashed line. The mean and variance for twenty trials is represented as a percentage of improvement over no tensioning. The
variance for deterministic policies is small in this experiment because the simulator is deterministic as well.

policy will work better, and the analytic and Deep RL policies
are overcompensating to error.

VIII. PHYSICAL EXPERIMENTS
A. dVRK: Hardware and Software

We use the Intuitive Surgical da Vinci Research Kit (dVRK)
surgical robot assistant, as in [13, 21, 28]. We interface
with the dVRK using open-source electronics and software
developed by [15]. The software system is integrated with
ROS and allows direct robot pose control. We use the standard
laparoscopic stereo camera for tracking fiducials on the
surgical gauze. We equip the right arm with the curved
scissors tooltip for cutting and the left arm with the needle
driver tooltip for pinching and tensioning. The arms are
located on either side of the surgical gauze to maximize the
workspace for each without collision.

B. Physical Evaluation of Deep RL

We show the physical results on 4 contours using Fixed
Tensioning and Deep RL using the symmetric difference as the
evaluation metric in Table II. The tensioning policy for Deep
RL was derived from simulation experiments by registering
the physical gauze to a sheet in the simulator environment.
In this set of experiments, we used fixed tensioning as the
baseline. The no tensioning policy frequently failed in the
physical experiment so we excluded that from the results table
for a fair baseline comparison. We were unable to evaluate
the analytic method in the physical experiments because the
state-estimation needed for feedback control was not possible
outside of the simulated environment.

Figure 1 also illustrates the results in the case of a circular
contour. We do not attempt analytic tensioning since it
requires real-time tracking of the pattern to estimate local
error. We observed that 3 out of 4 of the Deep RL experiments
performed better than the fixed tensioning policy with respect
to the symmetric difference of the cut and ideal trajectories.
This is the same objective the trained policy was designed
to minimize in simulation. A weakness of the policy was
failure to address discrete failure modes, including discrete

TABLE II: dVRK Physical Experiments: This table compares the
relative percentage improvement in terms of symmetric difference to
a baseline of fixed tensioning to Deep RL in experiments performed
on the dVRK robot. The black dot indicates the pinch point of the
gripper arm.

1 2 3 4
o e I
Shape . s 1 i e % .
DeepRL  118.63 % 36.77 % 75.33 % -44.59

failure modes induced by the policy itself. Failure as a result
of the scissors’ entanglement in the gauze occurred in both
experimental groups. The active manipulation and tensioning
of Deep RL also caused increased deformation of the cloth
which occasionally directly resulted in entanglement as well.
We did not optimize our policy to minimize these discrete
failures, and our simulator does not model the robot with
acceptable fidelity to do so. To address this, we would require
very accurate models of the robot arms and tools.

IX. FUTURE WORK

This paper introduces tensioning policies for Multilateral
Surgical Pattern Cutting in 2D Orthotropic Gauze and an
algorithm for learning such tensioning policies using Deep
Reinforcement Learning. We report accuracy and sensitivity
results with an implementation of the algorithm using 1) an
FEM fabric simulator and 2) a working dVRK surgical robot.

In future work, we will explore more complex tensioning
policies where the pinch point can change during execution
and where more than 4 tensioning directions are possible.
We will explore 1) alternate contour segmenting methods, 2)
segment ordering methods, and 3) methods for selecting pinch
points, all of which would reduce runtime complexity. We will
also explore methods to avoid collisions between the arms
and other obstacles and how this approach can be generalized
to cutting contours on more complex or moving surfaces and
manifolds for possible application to anastomosis.
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